
6502 - tsiraM Instruction set
Description Op Code Mnemonic Assembly Binary (in Hex)

Load the accumulator with a constant A9 LDA LDA #$07 A9 07

Load the accumulator from memory AD LDA LDA $0010 AD 10 00

Store the accumulator in memory 8D STA STA $0010 8D 10 00

Load the accumulator from X register 8A TXA TXA 8A

Load the accumulator from Y register 98 TYA TYA 98

Add with carry:Adds contents of an address to the
accumulator and keeps the result in the accumulator

6D ADC ADC $0010 6D 10 00

Load the X register with a constant A2 LDX LDX #$01 A2 01

Load the X register from memory AE LDX LDX $0010 AE 10 00

Load the X register from the accumulator AA TAX TAX AA

Load the Y register with a constant A0 LDY LDY #$04 A0 04

Load the Y register from memory AC LDY LDY $0010 AC 10 00

Load the Y register from the accumulator A8 TAY TAY A8

No Operation EA NOP NOP EA

Break 00 BRK BRK 00

Compare a byte in memory to the X reg. Sets the Z
(zero) flag if equal

EC CPX CPX $0010 EC 10 00

Branch n bytes if Z flag = 0 D0 BNE BNE $EF D0 EF

Increment the value of a byte EE INC INC $0021 EE 21 00

System Calls (This is not part of original 6502
instruction set)

If there is a #$01 in the X register
Print the integer in the Y register

FF SYS SYS FF

*If there is a #$02 in the X register
Print the 0x00 terminated string stored at address in the
Y register

FF SYS SYS FF

If there is a #$03 in the X register
Print the 0x00 terminated string from the address in the
operand

FF SYS SYS $0010 FF 10 00

6502 - tsiraM Instruction set: Example Programs
https://tsiram6502.abiggeek.com/

Use https://tsiram6502.abiggeek.com/ to run them. Only binaries (instructions) can be run in
the online emulator, you cannot paste the assembler examples, they are just for
reference.

For more information on system calls take a look at this full System call API (linux on x86):
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/ (this is to contrast with
our small system call API with 2 calls (print integer and print string).

Program example 1: 2+2 (just for reference)
#6502 Assembler
LDA #$02
STA $0010
ADC $0010
LDX #$01
TAY
SYS ← system call! (X was loaded with 1, Y with the value in the Accumulator)
BRK

#2+2 6502 opcodes (what you load into the emulator to run)
0xA9, 0x02, 0x8D, 0x10, 0x00, 0x6D, 0x10, 0x00, 0xA2, 0x01, 0xA8, 0xFF, 0x00

#Hello World

6502 Assembler (just for reference)
LDA #$03
SYS $0006
BRK
DATA 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x20, 0x57, 0x6F, 0x72, 0x6C, 0x64, 0x21, 0x0A,
0x00

6502 Instructions
0xA2, 0x03, 0xFF, 0x06, 0x00, 0x00, 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x20, 0x57, 0x6F,
0x72, 0x6C, 0x64, 0x21, 0x0A, 0x00

0006
#basic loop

#6502 Assembler for reference
00 LDA #$05 A9
02 STA $0040 8D
05 LDA #$01 A9

07 STA $0041 8D
0A TAY A8 ← loop back
0B LDX #$01 A2
0D SYS FF
0E ADC $0041 6D
11 TAX
12 CPX $0040 EC
15 BNE #$F3 D0
17 BRK 00

6502 Instructions
0xA9, 0x05, 0x8D, 0x40, 0x00, 0xA9, 0x01, 0x8D, 0x41, 0x00, 0xA8, 0xA2, 0x01, 0xFF,
0x6D, 0x41, 0x00, 0xAA, 0xEC, 0x40, 0x00, 0xD0, 0xF3, 0x00

11110011
00001101

To find BNE jump value: PC will be at 17 (15 for BNE, 16 for relative offset, 17 for
advance when done)
We want to go to 0A
17 => 23 (decimal)
-0A => 10 (decimal)
------ -----

13 = C 2’s comp! 0000 1101 => 11110010+1 11110011 = F 3

#powers program! Note: this program will run until my virtual 6502 force closes it (after
somewhere around 1 minute). Since this is not a multitasking system, programs have the CPU
until they give it up. Since this program will continually create powers of 2 forever, it only stops
because I have written a routine to limit the amount of cycles for any given program run.

6502 Assembler for reference
LDA #$00
STA $0040
LDA #$01
ADC $0040← loop back
STA $0040
TAY
LDX #$01
SYS
BNE $F4
HLT

#6502 Instructions

0xA9, 0x00, 0x8D, 0x40, 0x00, 0xA9, 0x01, 0x6D, 0x40, 0x00, 0x8D, 0x40, 0x00, 0xA8,
0xA2, 0x01, 0xFF, 0xD0, 0xF4, 0x00

Addition / Subtraction / Overflow / End-around carry checks

// addition normal (as high as you can go)
A9, 3F, 8D, 10, 00, A9, 40, 6D, 10, 00, A8, A2, 01, FF, 00

// subtraction direction 1: 5 - 3 = 2
A9, 05, 8D, 10, 00, A9, FD, 6D, 10, 00, A8, A2, 01, FF, 00

// subtraction direction 2: -3 + 5 = 2
A9, FD, 8D, 10, 00, A9, 05, 6D, 10, 00, A8, A2, 01, FF, 00

// neg result subtraction dir 1: 2 - 5 = -3 (FD)
A9, 02, 8D, 10, 00, A9, FB, 6D, 10, 00, A8, A2, 01, FF, 00

// neg result subtraction dir 2: -5 + 2 = -3 (FD)
A9, FB, 8D, 10, 00, A9, 02, 6D, 10, 00, A8, A2, 01, FF, 00

// positive overflow should result in 40 and carryFlag
A9, 60, 8D, 10, 00, A9, 60, 6D, 10, 00, A8, A2, 01, FF, 00

// 2 negatives in range should result in DD
A9, F0, 8D, 10, 00, A9, ED, 6D, 10, 00, A8, A2, 01, FF, 00

// negative overflow should result in 35 and carryFlag
A9, 95, 8D, 10, 00, A9, A0, 6D, 10, 00, A8, A2, 01, FF, 00

